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V. Irnerio 46, I-40126 Bologna, Italy, and

I.N.F.N., sezione di Bologna, Italy

E-mail: zucchinir@bo.infn.it

Abstract: BiHermitian geometry, discovered long ago by Gates, Hull and Roček, is the
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1. Introduction

Type II superstring Calabi-Yau compactifications are described by (2, 2) superconformal

sigma models with Calabi-Yau target manifolds. These field theories are however rather

complicated and, so, they are difficult to study. In 1988, Witten showed that a (2, 2)

supersymmetric sigma model on a Calabi-Yau space could be twisted in two different

ways, to give the so called A and B topological sigma models [1, 2]. Unlike the original

untwisted sigma model, the topological models are soluble: the calculation of observables

can be reduced to standard problems of geometry and topology. For the A model, the

ring of observables is found to be a deformation of the complex de Rham cohomology
⊕

p Hp(M, C)qu going under the name of quantum cohomology. For the B model, the

ring of observables turns out to be isomorphic to
⊕

p,q Hp(∧qT 1,0M). Furthermore, all

correlators of the A model are symplectic invariants of M , while all correlators of the

B model are invariants of the complex structure on M . For this reason, the topological

sigma models constitute an ideal and convenient field theoretic ground for the study of

2-dimensional supersymmetric field theories.

Witten’s analysis was restricted to the case where the sigma model target space ge-

ometry was Kaehler. In a classic paper, Gates, Hull and Roček [3] showed that, for a
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2-dimensional sigma model, the most general target space geometry allowing for (2, 2) su-

persymmetry was biHermitian or Kaehler with torsion geometry. This is characterized by

a Riemannian metric gab, two generally non commuting complex structures K±
a
b and a

closed 3-form Habc, such that gab is Hermitian with respect to both the K±
a
b and the K±

a
b

are parallel with respect to two different metric connections with torsion proportional to

±Habc [4 – 7]. This geometry is more general than that considered by Witten, which cor-

responds to the case where K+
a
b = ±K−

a
b and Habc = 0. So, the natural question arises

as to construct topological sigma models with biHermitian target space.

A turning point in the quest towards accomplishing this goal was the realization that

biHermitian geometry is naturally expressed in the language of generalized complex and

Kaehler geometry worked out by Hitchin and Gualtieri [8 – 10]. Many attempts have been

made to construct sigma models with generalized complex or Kaehler target manifolds, by

invoking world sheet supersymmetry, employing the Batalin-Vilkovisky quantization algo-

rithm, etc. [12 – 25]. All these were somehow unsatisfactory either because they remained

confined to the analysis of geometrical aspects of the sigma models or because they yielded

field theories, which though interesting in their own, were not directly suitable for quan-

tization, showed no apparent kinship with Witten’s A and B models and were of limited

relevance for string theory.

In their seminal paper [13], Kapustin and Li defined and studied the analogues of the

A and B models for the general biHermitian (2, 2) supersymmetric sigma model. They

tackled several crucial issues.

(a) They formulated their analysis in the natural framework of generalized complex and

Kaehler geometry.

(b) They identified the appropriate twisting prescriptions yielding the biHermitian A and

B models.

(c) They showed that the consistency of the quantum theory requires one of the two

twisted generalized complex structures forming the target space twisted generalized

Kaehler structure to be a twisted generalized Calabi-Yau structure.

(d) They showed that the BRST cohomology is isomorphic to the cohomology of the Lie

algebroid associated with that structure.

However, Kapustin and Li left much work to be done.

(e) They did not write down the explicit expression of the action St of the biHermitian A

and B models.

(f) They provided only partial expressions of the BRST symmetry operator st.

(g) They left unsolved the problem of writing the action in the form

St = stΨt + Stop, (1.1)

where Ψt is a ghost number −1 gauge fermion and Stop is a topological action, as

required by the topological nature of the model.
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In this paper, we have carried out these missing calculations and written down all the

required expressions. It is our belief that the completeness of the theory definitely demands

this work to be done. There still are open problems with point g above. Their solution is

left for future work.

The paper is organized as follows. In section 2, we review the basic notions of biHer-

mitian and generalized complex and Kaehler geometry used in the paper. In section 3, we

review the main properties of the biHermitian (2,2) supersymmetric sigma model, which

are relevant in the following analysis. In section 4, we implement the twisting prescriptions

of Kapustin and Li and write down the explicit expressions of the action St and of the

BRST symmetry operator st of the biHermitian A and B models. In section 5, we study

the ghost number anomaly and the descent formalism. In section 6, we compute the gauge

fermion Ψt and the topological action Stop appearing in (1.1). Finally, in the appendices,

we conveniently collect the technical details of our analysis.

After this work was completed, we became aware of the paper [26], where similar

results were obtained.

2. BiHermitian geometry

The target space geometry of the sigma models studied in the following is biHermitian.

Below, we review the basic facts of biHermitian geometry and its relation to generalized

Kaehler geometry.

Let M be a smooth manifold. A biHermitian structure (g,H,K±) on M consists of

the following elements.

(a) A Riemannian metric gab.
1

(b) A closed 3-form Habc

∂[aHbcd] = 0. (2.1)

(c) Two complex structures K±
a
b,

K±
a
cK±

c
b = −δa

b, (2.2)

K±
d
a∂dK±

c
b − K±

d
b∂dK±

c
a − K±

c
d∂aK±

d
b + K±

c
d∂bK±

d
a = 0. (2.3)

They satisfy the following conditions.

(d) gab is Hermitian with respect to both K±
a
b:

K±ab + K±ba = 0. (2.4)

(e) The complex structures K±
a
b are parallel with respect to the connections ∇±a

∇±aK±
b
c = 0, (2.5)

1Here and below, indices are raised and lowered by using the metric gab.
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where the connection coefficients Γ±
a
bc are given by

Γ±
a
bc = Γa

bc ±
1

2
Ha

bc, (2.6)

Γa
bc being the usual Levi-Civita connection coefficients.

The connections ∇±a do have a non vanishing torsion T±abc, which is totally antisym-

metric and indeed equal to the 3-form Habc up to sign,

T±abc = ±Habc. (2.7)

The Riemann tensors R±abcd of the ∇±a satisfy a number of relations, the most relevant

of which are collected in appendix A.

Usually, in complex geometry, it is convenient to write the relevant tensor identities

in the complex coordinates of the underlying complex structure rather than in general

coordinates. In biHermitian geometry, one is dealing with two generally non commuting

complex structures. One could similarly write the tensor identities in the complex coor-

dinates of either complex structures, but, in this case, the convenience of complex versus

general coordinates would be limited. We decided, therefore, to opt for general coordinates

throughout the paper. To this end, we define the complex tensors

Λ±
a
b =

1

2

(

δa
b − iK±

a
b

)

. (2.8)

The Λ±
a
b satisfy the relations

Λ±
a
cΛ±

c
b = Λ±

a
b, (2.9a)

Λ±
a
b + Λ±

a
b = δa

b, (2.9b)

Λ±
a
b = Λ±b

a. (2.9c)

Thus, the Λ±
a
b are projector valued endomorphisms of the complexified tangent bundle

TM ⊗ C. The corresponding projection subbundles of TM ⊗ C are the ± holomorphic

tangent bundles T 10
± M .

It turns out that the 3-form Habc is of type (2, 1)+ (1, 2) with respect to both complex

structures K±
a
b,

HdefΛ±
d
aΛ±

e
bΛ±

f
c = 0 and c.c. (2.10)

Other relations of the same type involving the Riemann tensors R±abcd are collected in

appendix A.

In [9], Gualtieri has shown that biHermitian geometry is related to generalized Kaehler

geometry. This, in turn, is part of generalized complex geometry. For a review of gener-

alized complex and Kaehler geometry accessible to physicists, see [11, 10]. Here, we shall

restrict ourselves to mention the salient points of these topics.

Let H be a closed 3-form. An H twisted generalized complex structure J is a section

of the endomorphism bundle of TM⊕T ∗M such that J 2 = −1 and J = −J ∗ with respect
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to the canonical inner product of TM ⊕ T ∗M and J is integrable with respect to the H

twisted Courant brackets of TM ⊕ T ∗M .

There is a pure spinor formulation of generalized complex geometry, which is often

very useful. Spinors of the Clifford bundle C`(TM ⊕ T ∗M) are just sections of ∧∗T ∗M ,

i.e. non homogeneous forms. The Clifford action is defined by

(X + ξ) · φ = iXφ + ξ ∧ φ, (2.11)

for X+ξ a section of TM⊕T ∗M and φ a section of ∧∗T ∗M .2 With each nowhere vanishing

spinor φ, there is associated the subbundle Lφ of TM ⊕T ∗M spanned by all sections X + ξ

of TM ⊕ T ∗M such that

(X + ξ) · φ = 0. (2.12)

Lφ is isotropic. The spinor φ is pure if Lφ is maximally isotropic. Conversely, with any

maximally isotropic subbundle L of TM ⊕ T ∗M , there is associated a nowhere vanishing

pure spinor φ defined up to pointwise normalization such that L = Lφ. In general, for

a given L, φ is defined only locally. Thus, L yields a generally non trivial line bundle

UL in ∧∗T ∗M , the pure spinor line of L. The above analysis continues to hold upon

complexification.

With any H twisted generalized complex structure, there is associated a maximally

isotropic subbundle LJ of (TM ⊕ T ∗M) ⊗ C: LJ is the +i eigenbundle of J in (TM ⊕

T ∗M) ⊗ C. In turn, with LJ , there is associated a pure spinor line UJ defined locally by

a pure spinor φJ . The integrability of J is equivalent to

dφJ − H ∧ φJ = (X + ξ) · φJ , (2.13)

for some section X + ξ of (TM ⊕ T ∗M) ⊗ C [9].3

An H twisted generalized complex structure J is an H twisted weak generalized

Calabi-Yau structure, if the nowhere vanishing pure spinor φJ is globally defined and

further

dφJ − H ∧ φJ = 0. (2.14)

Note that the line bundle UL is trivial in this case.

If ω is a symplectic structure, then

Jω =

(

0 −ω−1

ω 0

)

(2.15)

is an untwisted generalized complex structure. Its associated pure spinor is

φJω
= exp∧(−iω). (2.16)

φJω
is globally defined and closed. Therefore, Jω is a weak generalized Calabi-Yau struc-

ture.

2We use the convention iXωa1...ap−1
= Xbωba1...ap−1

with ω a p-form throughout the paper.
3One further has the Spin0(TM ⊕ T ∗M) invariant condition [φJ ∧ σ(φ̄J )]top 6= 0, where σ is the

automorphism which reverses the order of the wedge product and [· · · ]top denotes projection on the top

form.
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If K is a complex structure, then

JK =

(

K 0

0 −Kt

)

(2.17)

is an untwisted generalized complex structure. Its associated pure spinor is

φJK
= Ω(n,0) (2.18)

where Ω(n,0) is a closed holomorphic volume form. φJK
is only locally defined in general.

JK is a weak generalized Calabi-Yau structure, if Ω(n,0) is globally defined. Note that this

requires the vanishing of the Chern class c1(M).

An H twisted generalized Kaehler structure structure consists of a pair of H twisted

generalized complex structures J1,J2 such that J1,J2 commute and G ≡ −J1J2 > 0 with

respect to the canonical inner product of TM ⊕ T ∗M .

As shown in [9], if (g,H,K±) is a biHermitian structure, then

J1/2 =
1

2

(

K+ ± K− (K+ ∓ K−)g−1

g(K+ ∓ K−) −(K+
t ± K−

t)

)

(2.19)

yield an H-twisted generalized Kaehler structure as defined above.

An ordinary Kaehler structure (g,K) yields simultaneously a symplectic structure

ω = gK and a complex structure K, with which there are associated the generalized

complex structures J1 = JK J2 = Jω defined in (2.15), (2.17). Then, (J1,J2) is a

generalized Kaehler structure. If the Kaehler structure (g,K) is Calabi-Yau, then both J1

J2 are weak generalized Calabi-Yau structures.

3. The (2,2) supersymmetric sigma model

We shall review next the main properties of the biHermitian (2,2) supersymmetric sigma

model, which are relevant in the following analysis.

The base space of the model is a 1+1 dimensional Minkoskian surface Σ, usually taken

to be a cylinder. The target space of the model is a smooth manifold M equipped with a

biHermtian structure (g,H,K±). The basic fields of the model are the embedding field xa

of Σ into M and the spinor fields ψ±
a, which are valued in the vector bundle x∗TM .4

The action of biHermitian (2,2) supersymmetric sigma model is given by

S =

∫

Σ
d2σ

[

1

2
(gab + bab)(x)∂++xa∂−−xb (3.1)

+
i

2
gab(x)(ψ+

a∇+−−ψ+
b + ψ−

a∇−++ψ−
b)

+
1

4
R+abcd(x)ψ+

aψ+
bψ−

cψ−
d

]

,

4Complying with an established use, here and in the following the indices ± are employed both to label

the two complex structures K± of the relevant biHermitian structure and to denote 2-dimensional spinor

indices. It should be clear from the context what they stand for and no confusion should arise.
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where ∂±± = ∂0 ± ∂1,

∇±∓∓ = ∂∓∓ + Γ±
·
c ·(x)∂∓∓xc (3.2)

and the field bab is related to Habc as

Habc = ∂abbc + ∂bbca + ∂cbab. (3.3)

The (2, 2) supersymmetry variations of the basic fields can be written in several ways.

We shall write them in the following convenient form

δxa = i
[

α+Λ+
a
b(x)ψ+

b + α̃+Λ+
a
b(x)ψ+

b (3.4a)

+ α−Λ−
a
b(x)ψ−

b + α̃−Λ−
a
b(x)ψ−

b
]

,

δψ±
a = −α±Λ±

a
b(x)∂±±xb − α̃±Λ±

a
b(x)∂±±xb (3.4b)

− iΓ±
a
bc(x)

[

α+Λ+
b
d(x)ψ+

d + α̃+Λ+
b
d(x)ψ+

d

+ α−Λ−
b
d(x)ψ−

d + α̃−Λ−
b
d(x)ψ−

d
]

ψ±
c

± iHa
bc(x)

[

α±Λ±
b
d(x)ψ±

d + α̃±Λ±
b
d(x)ψ±

d
]

ψ±
c

∓
i

2

(

α±Λ±
a
d + α̃±Λ±

a
d

)

Hd
bc(x)ψ±

bψ±
c,

where α±, α̃± are constant Grassmann parameters. δ generates a (2, 2) supersymmetry

algebra on shell. The action S enjoys (2, 2) supersymmetry, so that

δS = 0. (3.5)

The biHermitian (2, 2) supersymmetric sigma model is characterized also by two types

of R symmetry: the U(1)V vector R symmetry

δV xa = 0, (3.6a)

δV ψ±
a = −iεV Λ±

a
b(x)ψ±

b + iεV Λ±
a
b(x)ψ±

b, (3.6b)

and the U(1)A axial R symmetry

δAxa = 0, (3.7a)

δAψ±
a = ∓iεAΛ±

a
b(x)ψ±

b ± iεAΛ±
a
b(x)ψ±

b, (3.7b)

where εV , εA are infinitesimal real parameters. Classically, the action S enjoys both types

of R symmetry, so that

δV S = δAS = 0. (3.8)

As is well known, at the quantum level, the R symmetries are spoiled by anomalies in gen-

eral. The R symmetry anomalies cancel, provided the following conditions are satisfied [13]:

c1(T
10
+ M) − c1(T

10
− M) = 0, vector R symmetry, (3.9a)

c1(T
10
+ M) + c1(T

10
− M) = 0, axial R symmetry. (3.9b)
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To generate topological sigma models using twisting, we switch to the Euclidean version

of the (2, 2) supersymmetric sigma model. Henceforth, Σ is a compact Riemann surface of

genus `Σ. Further, the following formal substitutions are to be implemented

∂++ → ∂z (3.10a)

∂−− → ∂z (3.10b)

ψ+
a → ψθ

a ∈ C∞(Σ, κΣ
1
2 ⊗ x∗TM) (3.10c)

ψ−
a → ψθ

a ∈ C∞(Σ, κΣ
1
2 ⊗ x∗TM) (3.10d)

where κΣ
1
2 is any chosen spin structure (a square root of the canonical line bundle κΣ of

Σ).

The topological twisting of the biHermitian (2, 2) supersymmetric sigma model is

achieved by shifting the spin of fermions either by qV /2 or qA/2, where qV , qA are the

fermion’s vector and axial R charges, respectively. The resulting topological sigma mod-

els will be called biHermitian A and B models, respectively. The twisting can be per-

formed only if the corresponding R symmetry is non anomalous, i.e if the conditions (3.9)

are satisfied. The (3.9) can be rephrased as conditions on the the generalized Kaehler

structure (J1,J2) corresponding to the given biHermitian structure (g,H,K±) according

to (2.19) [13]. If Ek denotes the +i eigenbundle of Jk in (TM ⊕ T ∗M) ⊗ C, then the

conditions read

c1(E2) = 0, A twist, (3.11a)

c1(E1) = 0, B twist. (3.11b)

R symmetry anomaly cancellation, however, is not sufficient by itself to ensure the

consistency of the twisting. Requiring the nilpotence of the BRST charge implies further

conditions, namely that

dφ2 − H ∧ φ2 = 0, A twist, (3.12a)

dφ1 − H ∧ φ1 = 0, B twist, (3.12b)

where the φk are the globally defined pure spinors associated with the generalized complex

structures Jk [13].

The conditions (3.11), (3.12) are satisfied if the structures J2, J1 are twisted weak

generalized Calabi-Yau, for the A and B twist, respectively. Further, when this is the

case, the BRST cohomology is equivalent to the Lie algebroid cohomology of the relevant

generalized complex structure [13]. This remarkable result was one of the achievements of

Kapustin’s and Li’s work.

4. The biHermitian A and B sigma models

As explained in section 3, the biHermitian A and B sigma models are obtained from the

biHermitian (2, 2) supersymmetric sigma model via a set of formal prescriptions, called A

– 8 –



J
H
E
P
1
2
(
2
0
0
6
)
0
3
9

and B twist. Concretely, the field content of the biHermitian A sigma model is obtained

from that of the (2, 2) supersymmetric sigma model via the substitutions

Λ+
a
b(x)ψθ

b → χ+
a ∈ C∞(Σ, x∗T 10

+ M), (4.1a)

Λ+
a
b(x)ψθ

b → ψ+z
a ∈ C∞(Σ, κΣ ⊗ x∗T 01

+ M), (4.1b)

Λ−
a
b(x)ψθ

b → ψ−z
a ∈ C∞(Σ, κΣ ⊗ x∗T 10

− M), (4.1c)

Λ−
a
b(x)ψθ

b → χ−
a ∈ C∞(Σ, x∗T 01

− M). (4.1d)

The symmetry variations of the A sigma model fields are obtained from those of the (2, 2)

supersymmetric sigma model fields (cf. eq. (3.4)), by setting

α̃+ = α− = 0, (4.2a)

α+ = α̃− = α. (4.2b)

Similarly, the field content of the biHermitian B sigma model is obtained from that of the

(2, 2) supersymmetric sigma model via the substitutions

Λ+
a
b(x)ψθ

b → ψ+z
a ∈ C∞(Σ, κΣ ⊗ x∗T 10

+ M), (4.3a)

Λ+
a
b(x)ψθ

b → χ+
a ∈ C∞(Σ, x∗T 01

+ M), (4.3b)

Λ−
a
b(x)ψθ

b → ψ−z
a ∈ C∞(Σ, κΣ ⊗ x∗T 10

− M), (4.3c)

Λ−
a
b(x)ψθ

b → χ−
a ∈ C∞(Σ, x∗T 01

− M). (4.3d)

The symmetry variations of the B sigma model fields are obtained from those of the (2, 2)

supersymmetric sigma model fields, by setting

α+ = α− = 0, (4.4a)

α̃+ = α̃− = α. (4.4b)

Inspection of the A, B twist prescriptions reveals that

A twist ¿ B twist under K+
a
b ¿ −K+

a
b. (4.5)

The target space geometrical data (g,H,K±), (g,H, ∓ K±) have precisely the same prop-

erties: they are both biHermitian structures. So, at the classical level, any statement

concerning the A (B) model translates automatically into one concerning the B (A) model

upon reversing the sign of K+.5 For this reason, below, we shall consider only the B twist,

unless otherwise stated.

The twisted action St is obtained from the (2, 2) supersymmetric sigma model action

S (3.1) implementing the substitutions (4.3). One finds

St =

∫

Σ
d2z

[

1

2
(gab + bab)(x)∂zx

a∂zx
b (4.6)

+ igab(x)(ψ+z
a∇+zχ+

b + ψ−z
a∇−zχ−

b)

+ R+abcd(x)χ+
aψ+z

bχ−
cψ−z

d

]

.

5For notational consistency, exchanging K+
a

b ¿ −K+
a

b must be accompanied by switching α+
¿ α̃+.
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Similarly the twisted field variations are obtained from the (2, 2) supersymmetry field

variations (3.4) via (4.3), (4.4). One finds that

δt = αst, (4.7)

where st is the fermionic variation operator defined by

stx
a = i(χ+

a + χ−
a), (4.8a)

stχ+
a = −iΓ+

a
cb(x)χ−

cχ+
b, (4.8b)

stχ−
a = −iΓ−

a
cb(x)χ+

cχ−
b,

stψ+z
a = −iΓ+

a
cb(x)(χ+

c + χ−
c)ψ+z

b − Λ+
a
b(x)(∂zx

b − iHb
cd(x)χ+

cψ+z
d), (4.8c)

stψ−z
a = −iΓ−

a
cb(x)(χ+

c + χ−
c)ψ−z

b − Λ−
a
b(x)(∂zx

b + iHb
cd(x)χ−

cψ−z
d).

The action St is invariant under st,

stSt = 0. (4.9)

It is straightforward to verify that the ideal of field equations in the algebra of local com-

posite fields is invariant under st. One verifies also that

st
2 ≈ 0, (4.10)

where ≈ denotes equality on shell, so that st is nilpotent on shell. The proof of these

statements is outlined in appendix B. In this way, st defines an on shell cohomological

complex. st corresponds to the BRST charge of the model and its on shell cohomology is

isomorphic to the BRST cohomology.

In (4.4), there is no real need for the supersymmetry parameters α̃+, α̃− to take

the same value α, since, under twisting both become scalars. If we insist α̃+, α̃− to be

independent in (3.4), we obtain a more general symmetry variation

δ̂t = α̃+st+ + α̃−st+ (4.11)

where the fermionic variation operators st± are given by

st+xa = iχ+
a, (4.12a)

st−xa = iχ−
a,

st+χ+
a = 0, (4.12b)

st−χ+
a = −iΓ+

a
cb(x)χ−

cχ+
b,

st+χ−
a = −iΓ−

a
cb(x)χ+

cχ−
b,

st−χ−
a = 0,

st+ψ+z
a = −iΓ+

a
cb(x)χ+

cψ+z
b − Λ+

a
b(x)(∂zx

b − iHb
cd(x)χ+

cψ+z
d), (4.12c)

st−ψ+z
a = −iΓ+

a
cb(x)χ−

cψ+z
b,

st+ψ−z
a = −iΓ−

a
cb(x)χ+

cψ−z
b,

st−ψ−z
a = −iΓ−

a
cb(x)χ−

cψ−z
b − Λ−

a
b(x)(∂zx

b + iHb
cd(x)χ−

cψ−z
d).
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The action St is invariant under both st±,

st±St = 0. (4.13)

It is straightforward though lengthy to verify that the ideal of field equations in the algebra

of local composite fields is invariant under each st± separately. One can show also that the

st± are nilpotent and anticommute on shell

st±
2 ≈ 0, (4.14a)

st+st− + st−st+ ≈ 0. (4.14b)

The proof of these relations is outlined again in appendix B. It is easy to verify that st

and the st± are related as

st = st+ + st−. (4.15)

Therefore, the st± define an on shell cohomological double complex, whose total differential

is st, a fact already noticed in [13]. (4.15) corresponds to the decomposition of BRST charge

in its left and right chiral components.

The significance of these findings in not clear to us, beyond their ostensible algebraic

meaning. As shown in [13], the on shell st cohomology, or BRST cohomology, is equivalent

to the Lie algebroid cohomology of the H twisted generalized complex structure J1 under-

lying the target space biHermitian structure. No interpretation of the double on shell st±

cohomology on the same lines is known to us yet.

With each biHermitian sigma model of the form described above, there is associated

in canonical fashion a conjugate biHermitian sigma model as follows. If (g,H,K±) is the

target space biHermitian structure of the given sigma model, the biHermitian structure

(g′,H ′,K ′) of the conjugate model is given by

g′ab = gab, (4.16a)

H ′
abc = −Habc, (4.16b)

K ′
±

a
b = K∓

a
b. (4.16c)

The world sheet complex structure of the conjugate model is the conjugate of the world

sheet complex structure of the given model. The fields of the conjugate model are related

to fields of the given model as

x′a = xa, (4.17a)

χ′
+

a = χ−
a, χ′

−
a = χ+

a, (4.17b)

ψ′
+z′

a = ψ−z
a, ψ′

−z′
a = ψ+z

a, (4.17c)

where z′ = z. It is readily verified that the actions of the given and conjugate model are

equal

S′
t = St. (4.18)
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Their BRST variations are likewise equal,

s′t = st. (4.19)

Explicitly, this relations means that for any sigma model field φ, s′tφ
′ = stφ upon tak-

ing (4.16), (4.17) into account. Similarly, one has

s′t± = st∓. (4.20)

The original Kaehler B model studied by Witten in [1, 2] is a particular case of the

biHermitian B model expounded here: the Kaehler B model with target space Kaehler

structure (g,K) is equal to the biHermitian B model with target space biHermitian struc-

ture (g,H = 0,K± = K) up to simple field redefinitions. Similarly, the Kaehler A model

with Kaehler structure (g,K) equals the biHermitian A model with biHermitian structure

(g,H = 0,K± = ∓K). We note that the fermionic variation st of the usual Kaehler B

model (eq. (4.2) of [2]) is strictly nilpotent and not simply nilpotent on shell. This prop-

erty no longer holds in the general biKaehler B model studied in this paper, where st is

nilpotent only on shell. This follows from eqs. (B.3d), (B.3e) of appendix B. The terms

which obstruct the nilpotence of st are Λ+
a
bE−z

b Λ−
a
bE+z

b, which vanish on shell. For

the Kaehler B model, the field H = 0 and the complex structures K+ = K−. This makes

these terms vanish for algebraic reasons even off shell.

5. Ghost number and descent

We shall postpone the analysis of the delicate issue whether the biHermitian sigma models

described in section 4 are indeed topological field theories to section 6. In this section,

we shall study certain properties of the models which are relevant in the computation of

topological correlators, namely the ghost number anomaly and the descent formalism. For

reasons explained in section 4, we can restrict ourselves to the analysis of the B model.

The biHermitian action St, given in eq. (4.6), enjoys, besides the BRST symmetry, the

ghost number symmetry, defined by the field variations

δghxa = 0, (5.1a)

δghχ+
a = −iε+χ+

a, (5.1b)

δghχ−
a = −iε−χ−

a,

δghψ+z
a = iε+ψ+z

a, (5.1c)

δghψ−z
a = iε−ψ−z

a,

where ε± are infinitesimal even parameters. Thus,

δghSt = 0. (5.2)

The fields xa, χ+
a, χ−

a, ψ+z
a, ψ−z

a have ghost number 0, +1, +1, −1, −1, respectively.

The fermionic variation operators st or st± all carry ghost number +1: their action increases

ghost number by one unit.
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At the quantum level, the ghost number symmetry is anomalous. Indeed, inspecting

the fermionic kinetic terms of the action St, through a simple application of the index

theorem, it is easy to see that

n(χ+) − n(ψ+z) =

∫

Σ
x∗c1(T

10
+ M) + dimC M(1 − `Σ), (5.3a)

n(χ−) − n(ψ−z) =

∫

Σ
x∗c1(T

10
− M) + dimC M(1 − `Σ), (5.3b)

where n(χ+), n(ψ+z) n(χ−), n(ψ−z), are the numbers of χ+
a, ψ+z

a, χ−
a, ψ−z

a zero modes,

respectively. Generically, n(ψ+z), n(ψ−z) vanish, while n(χ+), n(χ−) do not. Consequently,

the vacuum carries a non vanishing ghost number charge signaling an anomaly. In quantum

correlators, this charge must be soaked up by insertions of fields χ+
a, χ−

a.

Next, let us consider the field variations corresponding to the symmetry parameters

α+, α− in (3.4). This means that, in (4.4), we relax the condition α+ = α− = 0. Upon

twisting, α+, α− become Grassmann world sheet vector fields αz , αz, respectively. Thus,

the corresponding fermionic variation operators ht+z, ht−z are not scalar: they change the

world sheet covariance properties of the fields as indicated by their notation. From (3.4),

we obtain easily

ht+zx
a = iψ+z

a, (5.4a)

ht−zx
a = iψ−z

a,

ht+zχ+
a = −iΓ+

a
bc(x)ψ+z

bχ+
c − Λ+

a
b(x)(∂zx

b − iHb
cd(x)ψ+z

cχ+
d), (5.4b)

ht−zχ+
a = −iΓ+

a
bc(x)ψ−z

bχ+
c,

ht+zχ−
a = −iΓ−

a
bc(x)ψ+z

bχ−
c,

ht−zχ−
a = −iΓ−

a
bc(x)ψ−z

bχ−
c − Λ−

a
b(x)(∂zx

b + iHb
cd(x)ψ−z

cχ−
d),

ht+zψ+z
a = −iΓ−

a
bc(x)ψ+z

bψ+z
c, (5.4c)

ht−zψ+z
a = −iΓ+

a
bc(x)ψ−z

bψ+z
c,

ht+zψ−z
a = −iΓ−

a
bc(x)ψ+z

bψ−z
c,

ht−zψ−z
a = −iΓ+

a
bc(x)ψ−z

bψ−z
c.

The variation operators ht+z, ht−z lead to no new symmetry of the action St. They would,

if the world sheet vector fields αz, αz could be taken (anti)holomorphic, but this is not

possible on a generic compact Riemann surface Σ. However, they are useful, as they

implement the descent sequence yielding the world sheet 1– and 2-form descendants O(1),

O(2) of an st invariant world sheet 0-form field O(0) [1, 2]. Let us recall briefly how this

works out in detail.

Define the 1-form bosonic variation operators6

ht+ = dzht+z , ht− = dzht−z (5.5)

6We assume conventionally that the dz, dz anticommute with the fermionic fields χ±
a, ψ+z

a, ψ+z
a and

the fermionic variation operartors st, st±, ht+z, ht−z.
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acting on the algebra of form fields generated by the fields xa, χ+
a, χ−

a and the bosonic

world sheet 1-form fields

ψ+
a = dzψ+z

a, ψ−
a = dzψ+z

a. (5.6)

Now, set

ht = ht+ + ht−. (5.7)

It is straightforward to verify that the ideal of field equations in the algebra of local com-

posite form fields is invariant under ht and that the on shell relation

htst − stht ≈ −id, (5.8)

holds, where d = dz∂z + dz∂z is the world sheet de Rham differential. The proof of these

results is outlined again in appendix B.

Assume now that O(0) is local 0-form field such that

stO
(0) ≈ 0. (5.9)

Define the 1– and 2-form local fields

O(1) = htO
(0), (5.10a)

O(2) =
1

2
htO

(1). (5.10b)

Then, from (5.8), (5.9), one has the descent equations

stO
(1) ≈ idO(0), (5.11a)

stO
(2) ≈ idO(1). (5.11b)

Consequently, one has

st

∮

γ
O(1) ≈ 0, (5.12a)

st

∮

Σ
O(2) ≈ 0, (5.12b)

where γ is a 1-cycle in Σ. In this way, non local BRST invariants can be obtained canon-

ically once a local scalar one is given. These invariants are the operators inserted in

topological correlators of the associated topological field theories.

The action of the ht± is in fact compatible with the double on shell st± cohomology

underlying the on shell st cohomology. Indeed the ideal of field equations in the algebra of

form fields is separately invariant under the ht± and, furthermore, the on shell relations

ht+st+ − st+ht+ ≈ −i∂, (5.13a)

ht−st− − st−ht− ≈ −i∂, (5.13b)

ht+st− − st−ht+ ≈ 0, (5.13c)

ht−st+ − st+ht− ≈ 0 (5.13d)
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hold, where ∂ = dz∂z and c.c. are the world sheet Dolbeault operators. One has further

on shell relations

ht±ht± ≈ 0, (5.14a)

ht+ht− − ht−ht+ ≈ 0. (5.14b)

See again appendix B for a proof of these relations.

We note that the operators ht, ht± all carry ghost number −1. Under conjugation (cf.

eq. (4.16), (4.17)), one has

h′
t = ht (5.15)

and

h′
t± = ht∓. (5.16)

6. The biHermitian models are topological

The biHermitian sigma models studied in section 4 should be topological field theories. To

check this, one should be able to express the sigma model action as

St ≈ stΨt + Stop, (6.1)

where ≈ denotes on shell equality, Ψt is a ghost number −1 topological gauge fermion

and Stop is a topological action. General arguments indicate that, at the quantum level,

when (6.1) holds, the topological sigma model field theory depends generically only on the

geometrical data contained in Stop, since variations of the geometrical data contained in Ψt

result in the insertion in topological correlators of BRST cohomologically trivial operators

and, so, cannot modify those correlators [1, 2]. For reasons explained in section 4, below

we shall restrict ourselves to the analysis of the B model.

In general, the topological action Stop is of the form

Stop =

∫

Σ
x∗ω, (6.2)

where ω is a 2-form depending on some combinations of the target space geometrical

data (g,H,K±). If (6.1), (6.2) hold, the sigma model field theory depends only on those

combinations and is independent from the complex structure of the world sheet Σ. If ω is

closed,

dω = 0, (6.3)

then Stop is invariant under arbitrary infinitesimal variations of x. This condition, however,

is not strictly necessary to show the topological nature of the model, though it holds

normally.7 When (6.3) holds, we say that Stop is strictly topological.

When H = 0, it is straightforward to see that Ψt, Stop are given by

Ψt = −

∫

Σ
d2z

1

2
gab(x)

(

ψ+z
a∂zx

b + ψ−z
a∂zx

b
)

, (6.4a)

Stop =

∫

Σ
d2z

1

4

(

2bab − iK+ab + iK−ab

)

(x)∂zx
a∂zx

b. (6.4b)

7We thank A. Kapustin for pointing this out to us.
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The expression of Ψt is formally identical to that originally found by Witten in [1, 2]. The

action Stop is of the form (6.2), (6.3) and so it is indeed strictly topological.

Finding Ψt, Stop when H 6= 0 is far more difficult. In this case, apparently, the

target space tensor fields which can be built directly from g, H, K± are not sufficient

for constructing a gauge fermion Ψt and a topological action Stop. So far, we have not

been able to find the solution of this problem in full generality. We have however found a

solution valid in the generic situation, as we illustrate next.

Below, we shall assume that the pure spinor φ1 of the H twisted generalized complex

structure J1 associated with by the biHermitian structure (g,H,K±) via (2.19) can be

taken of the form

φ1 = exp∧(b + β), (6.5)

where β is a complex 2-form. In our case, for reasons explained in section 3, J1 is actually

a H twisted weak generalized Calabi-Yau structure and, so, the pure spinor φ1 is globally

defined and satisfies (2.14). This requires that β is closed,

dβ = 0. (6.6)

Generalized Kaehler structures with the above properties have been considered by Hitchin

in [27], where various non trivial examples are worked out in detail.

Now, using (2.19), one verifies that the sections X + ξ of (TM ⊕T ∗M)⊗C of the form

X + ξ = X ∓ igK±X, (6.7)

with X a section of T 10
± M are valued in the +i eigenbundle of J1. Thus, as explained in

section 2, these must annihilate the pure spinor φ1 (cf. eq. (2.11)). It is easy to see that

this leads to the equation

iX(β + b ± igK±) = 0, (6.8)

for any section X of T 10
± M . From here, it follows that there are two 2-forms γ± of type

(2, 0) with respect to the complex structure K±, respectively, such that

β + b ± igK± − γ± = 0. (6.9)

This is our basic technical result. We have collected some of the details of the above

analysis in appendix C.

The 2-forms γ± furnish the hitherto missing elements needed for the construction of

the topological gauge fermion Ψt and the topological action Stop. The crucial relations

leading to their existence and determining their properties are (6.6), (6.8), which however

hinge on the assumption that the pure spinor φ1 is of the form (6.5). There are of course

biHermitian structures for which (6.5), is not fulfilled. In general, the pure spinor φ1 is of

the form

φ1 = exp∧(b + β) ∧ Ω, (6.10)

where β is a complex 2-form and Ω is a complex k-form that is decomposable

Ω = θ1 ∧ · · · ∧ θk, (6.11)
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the θi being linearly independent complex 1-forms [8, 9]. The integer k is called type. De-

manding that φ1 satisfies the twisted weak Calabi-Yau condition (2.14) entails the equations

dΩ = 0, (6.12a)

dβ ∧ Ω = 0. (6.12b)

Requiring further that sections X + ξ of (TM ⊕ T ∗M)⊗ C of the form (6.7) annihilate φ1

yields

iXΩ = 0, (6.13a)

iX(β + b ± igK±) ∧ Ω = 0. (6.13b)

for any section X of T 10
± M . In this way, we see that, while (6.6), (6.8) hold when the

pure spinor φ1 is of the special form (6.5), they do not necessarily hold when φ1 is of the

general form (6.10), though they may. If they do, then 2-forms γ± exist and have the same

properties as when (6.5) is satisfied.

As shown in refs. [8, 9], the generic even (odd) type twisted generalized complex struc-

tures are those of type 0 (1). The twisted generalized complex structures for which (6.5)

hold are of type 0. Thus, our analysis covers the generic even type structures and may

possibly cover a subset of the remaining structures.

The type k is not necessarily constant and may jump at a locus C ⊂ M of an even

number of units. Type jumping is one of the subtlest aspects of generalized complex

geometry [9, 11]. If it does occur, it is possible for the spinor φ1 to have the special

form (6.5) at M \ C, while taking the general form (6.10) at C. In that case, we expect

the 2-forms γ± to develop some sort of singularity at C. If the embedding field x intersects

C, then our analysis below, which assumes the smoothness of the γ±, may break down. In

this way, the locus C may behave as some kind of defect, that is invisible at the classical

level, but which may have detectable effects at the quantum level. This however is just a

speculation for the time being. At any rate, type jumping occurs only for dimR M ≥ 6.

Examples of type jumping from 0 to an higher even value are not easily found.

Under the assumption that the 2-forms γ± are available, one can show by explicit

computation that (6.1) indeed holds with

Ψt = −

∫

Σ
d2z

1

2

{

(

gab +
1

2
γ+ab

)

(x)ψ+z
a∂zx

b +
(

gab −
1

2
γ−ab

)

(x)ψ−z
a∂zx

b
}

, (6.14a)

Stop =

∫

Σ
d2z

1

4

(

2bab − iK+ab + iK−ab − γ+ab − γ−ab

)

(x)∂zx
a∂zx

b. (6.14b)

The verification requires the use of several non trivial identities involving γ± following

from (6.6), (6.9), which are conveniently collected in appendix D. From (6.9), it appears

that the action Stop can be written as

Stop = −

∫

Σ
d2z

1

2
βab(x)∂zx

a∂zx
b. (6.15)
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Since β satisfies (6.6), the action Stop is again of the form (6.2), (6.3) and, therefore, it is

strictly topological. It is quite remarkable that Stop is related in simple fashion to the pure

spinor φ1 associated with the generalized complex structure J1.
8

In the above discussion, we have tacitly assume that the closed 3-form H is exact,

so that the 2 form b is globally defined. If H is not exact, b is defined only locally. The

combination β + b is however globally defined in any case, as φ1 is, and, so, also the 2-

forms γ± are, by (6.9). If H is not exact, the meaning of the term
∫

Σ x∗b appearing in the

expression of Stop must be qualified. If x(Σ) is a boundary in the target space M , then
∫

Σ x∗b =
∫

Γ x̄∗H, where Γ is a 3-fold such that ∂Γ = Σ and x̄ : Γ → M is an embedding

such that x̄|Σ = x. The value of
∫

Σ x∗b computed in this way depends on the choice of Γ. In

the quantum theory, in order to have a well defined weight exp(iS) in the path integral for

a properly normalized action S, it is necessary to require that H/2π has integer periods,

so that the cohomology class [H/2π] ∈ H3(M, R) belongs to the image of H3(M, Z) in

H3(M, R). If one wants to extend the definition to the general case where x(Σ) is a cycle

of M , the theory of Cheeger-Simons differential characters is required [28, 29].

We remark that, when H = 0, (6.1) holds with Ψt, Stop given by (6.4a), (6.4b) even

if (6.5) does not hold. If it does, however, one can use alternatively (6.14a), (6.14b). Note

that (6.14a), (6.14b) do not reduce to (6.4a), (6.4b) when H = 0, since the 2-forms γ± do

not necessarily vanish for H = 0. This indicates that the splitting (6.1) of S as a sum of a

BRST exact plus a topological term is not unique and can be done in more than one way

in general.

Assuming again that the 2-forms γ± are available, one has also a chirally split version

of (6.1),

St ≈ st+Ψt+ + st−Ψt− + Stop, (6.16)

where the gauge fermions Ψt± are given by

Ψt+ = −

∫

Σ
d2z

1

2

(

gab +
1

2
γ+ab

)

(x)ψ+z
a∂zx

b, (6.17a)

Ψt− = −

∫

Σ
d2z

1

2

(

gab −
1

2
γ−ab

)

(x)ψ−z
a∂zx

b, (6.17b)

and Stop is given by (6.14b). Note also that

Ψt = Ψt+ + Ψt− (6.18)

When H = 0, (6.16) holds in any case with γ± = 0. The significance of these properties is

not clear to us yet.

The results, which we have obtained, albeit still incomplete, shed light on the na-

ture of world sheet and target space geometrical data, on which the quantum field the-

ories associated with the biHermitian A and B sigma models effectively depend. The

expressions (6.4b), (6.14b) of Stop obtained above show that Stop depends only on J1 (cf.

eq. (2.19)). Thus, the quantum biHermitian B model considered here depends effectively

8The possibility of a connection of this type was predicted by A. Tomasiello before this analysis was

made.
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only on J1. The quantum biHermitian A model depends instead only on J2 on account

of (4.5). Both models are also evidently independent from the complex structure of the

world sheet Σ. These findings confirm earlier results [12, 13].

For the usual Kaehler A model, H = 0 and −K+ = K−. Then, relation (6.1) reduces

to the analogous relation originally found by Witten (cf. eqs. (3.3)–(3.5) of [2]). For the

Kaehler B model, H = 0 and K+ = K−. Here, however, one has to take into account

that Witten calculation holds in strict sense and not simply on shell as the one carried out

above. Witten found that (6.1) holds with Stop replaced by a functional W of the fermion

fields (cf. eq. (4.3)–(4.6) of [2]). However, W = 0 on shell as is easy to see. Upon taking

this into account, relation (6.1) reproduces Witten’s result on shell, as required.
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A. Formulae of biHermitian geometry

In this appendix, we collect a number of useful identities of biHermitian geometry, which

are repeatedly used in the calculations illustrated in the main body of the paper. Below

(g,H,K±) is a fixed biHermitian structure on an even dimensional manifold M .

1. Relations satisfied by the 3-form Habc.

∂aHbcd − ∂bHacd + ∂cHabd − ∂dHabc = 0. (A.1)

2. Relations satisfied by the connections Γ±
a
bc.

Γ±
a
bc = Γa

bc ±
1

2
Ha

bc, (A.2a)

Γ±
a
bc = Γ∓

a
cb, (A.2b)

where Γa
bc is the Levi-Civita connection of the metric gab.

3. Relations satisfied by the torsion T±
a
bc of Γ±

a
bc.

T±
a
bc = ±Ha

bc, (A.3a)

T±
a
bc = T∓

a
cb. (A.3b)

4. Relations satisfied by the Riemann tensor R±abcd of Γ±
a
bc.

R±abcd = Rabcd ±
1

2
(∇dHabc −∇cHabd) +

1

4
(He

adHebc − He
acHebd), (A.4a)

R±abcd = R∓cdab, (A.4b)
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where Rabcd is the Riemann tensor of the metric gab.

Bianchi identities.

R±abcd + R±acdb + R±adbc ∓ (∇±bHacd + ∇±cHadb + ∇±dHabc) (A.5a)

+ He
abHecd + He

acHedb + He
adHebc = 0,

∇±eR±abcd + ∇±cR±abde + ∇±dR±abec (A.5b)

± (Hf
ecR±abfd + Hf

cdR±abfe + Hf
deR±abfc) = 0.

Other identities

R±abcd − R±cbad = R±acbd ±∇±dHabc, (A.6a)

R±abcd − R±cbad = R∓acbd ∓∇∓bHacd, (A.6b)

R±abcd − R∓abcd = ±∇±dHabc ∓∇±cHdab (A.6c)

+ He
acHebd + He

daHebc − He
abHecd.

5. The complex structures K±
a
cK±

c
b.

K±
a
cK±

c
b = −δa

b. (A.7)

Integrability

K±
d
a∂dK±

c
b − K±

d
b∂dK±

c
a − K±

c
d∂aK±

d
b + K±

c
d∂bK±

d
a = 0. (A.8)

Hermiticity

gcdK±
c
aK±

d
b = gab. (A.9)

Kaehlerness with torsion

∇±aK±
b
c = 0. (A.10)

6. Other properties.

HefgΛ±
e
aΛ±

f
bΛ±

g
c = 0 and c. c., (A.11)

R±efcdΛ±
e
aΛ±

f
b = 0 and c. c., (A.12)

where

Λ±
a
b =

1

2
(δa

b − iK±
a
b) and c. c. (A.13)

B. Some technical calculations

Let
�

be the graded commutative algebra of local composite fields generated by the fields

xa, χ+
a, χ−

a, ψ+z
a, ψ+z

a. Let � be the bilateral ideal of
�

generated by the composite
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fields

Dzz
a = −∇+z∂zx

a + iR+bc
a
d(x)χ+

bψ+z
c∂zx

d + iR−bc
a
d(x)χ−

bψ−z
c∂zx

d (B.1a)

+ (∇+
aR+bcde + Hfa

dR+bcfe + Hfa
eR+bcdf )(x)χ+

bψ+z
cχ−

dψ−z
e

= −∇−z∂zx
a + iR+bc

a
d(x)χ+

bψ+z
c∂zx

d + iR−bc
a
d(x)χ−

bψ−z
c∂zx

d

+ (∇−
aR−bcde − Hfa

dR−bcfe − Hfa
eR−bcdf )(x)χ−

bψ−z
cχ+

dψ+z
e,

E+z
a = i∇+zχ+

a + R+
a
bcd(x)χ+

bχ−
cψ−z

d, (B.1b)

E−z
a = i∇−zχ−

a + R−
a
bcd(x)χ−

bχ+
cψ+z

d,

F+zz
a = i∇+zψ+z

a + R+
a
bcd(x)ψ+z

bχ−
cψ−z

d, (B.1c)

F−zz
a = i∇−zψ−z

a + R−
a
bcd(x)ψ−z

bχ+
cψ+z

d.

� is usually called the ideal of field equations, because the vanishing of its generators (B.1)

is equivalent to the imposition of the field equations on the basic fields. The on shell

quotient algebra
�

E =
�

/� is thus defined.

The ideal � is invariant under the fermionic variation operators st+, st−, defined

in (4.12), as the following calculation shows

st+Dzz
a = −iΓ−

a
cb(x)χ+

cDzz
b −∇−zE+z

a + iR−
a
dbc(x)E+z

dχ+
bψ+z

c (B.2a)

− iR+
a
bcd(x)χ+

bE−z
cψ−z

d − iR+
a
bcd(x)χ+

bχ−
cF−zz

d,

st−Dzz
a = −iΓ+

a
cb(x)χ−

cDzz
b −∇+zE−z

a + iR+
a
dbc(x)E−z

dχ−
bψ−z

c

− iR−
a
bcd(x)χ−

bE+z
cψ+z

d − iR−
a
bcd(x)χ−

bχ+
cF+zz

d,

st+E+z
a = −iΓ−

a
cb(x)χ+

cE+z
b, (B.2b)

st−E+z
a = −iΓ+

a
cb(x)χ−

cE+z
b,

st+E−z
a = −iΓ−

a
cb(x)χ+

cE−z
b, (B.2c)

st−E−z
a = −iΓ+

a
cb(x)χ−

cE−z
b,

st+F+zz
a = −iΓ+

a
cb(x)χ+

cF+zz
b (B.2d)

+ iΛ+
a
b(x)[Dzz

b + Hb
cd(x)E+z

cψ+z
d + Hb

cd(x)χ+
cF+zz

d],

st−F+zz
a = −iΓ+

a
cb(x)χ−

cF+zz
b,

st+F−zz
a = −iΓ−

a
cb(x)χ+

cF−zz
b, (B.2e)

st−F−zz
a = −iΓ−

a
cb(x)χ−

cF−zz
b

+ iΛ−
a
b(x)[Dzz

b − Hb
cd(x)E−z

cψ−z
d − Hb

cd(x)χ−
cF−zz

d].

Therefore, st+, st− induce fermionic variation operators on the on shell algebra
�

E , which

we shall denote by the same symbols. The composite variations st+
2, st−

2, st+st− +

st−st+map the field algebra
�

into the field equation ideal � , as

st+
2xa = 0, (B.3a)

st−
2xa = 0,

(st+st− + st−st+)xa = 0,

st+
2χ+

a = 0, (B.3b)
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st−
2χ+

a = 0,

(st+st− + st−st+)χ+
a = 0,

st+
2χ−

a = 0, (B.3c)

st−
2χ−

a = 0,

(st+st− + st−st+)χ−
a = 0,

st+
2ψ+z

a = 0, (B.3d)

st−
2ψ+z

a = 0,

(st+st− + st−st+)ψ+z
a = −Λ+

a
b(x)E−z

b,

st+
2ψ−z

a = 0, (B.3e)

st−
2ψ−z

a = 0,

(st+st− + st−st+)ψ−z
a = −Λ−

a
b(x)E+z

b.

Therefore, st+, st− are nilpotent and anticommute on
�

E . This shows (4.14).

Instead of the field algebra
�

, we consider now the graded commutative form field

algebra
�

• generated by the scalar fields xa, χ+
a, χ−

a, ψ+
a, ψ−

a, where ψ+
a, ψ−

a are

defined in (5.6). Likewise, we consider the bilateral ideal � • of
�

• generated by the form

field equation fields

Da = dz ∧ dzDzz
a, (B.4a)

E+
a = dzE+z

a, E−
a = dzE−z

a, (B.4b)

F+
a = dz ∧ dzF+zz

a, F−
a = dz ∧ dzF−zz

a, (B.4c)

where Dzz
a, E+z

a, E−z
a, F+zz

a, F−zz
a are defined in (B.1). The on shell form field algebra�

•
E • =

�
•/� • is therefore defined.

The fermionic variation operators st+, st− extend in natural and obvious fashion to

the field algebras
�

• and
�

•
E • , upon assuming conventionally that st+, st− anticommute

with dz, dz. In addition to st+, st−, we have also the even 1-form variations ht+, ht−,

defined by eqs. (5.4), (5.5) and acting on
�

•. ht+, ht− preserve � •, since indeed

ht+Da = 0, (B.5a)

ht−Da = 0,

ht+E+
a = −iΓ+

a
cb(x)ψ+

c ∧ E+
b (B.5b)

+ iΛ+
a
b(x)[−Db + Hb

cd(x)ψ+
c ∧ E+

d + Hb
cd(x)χ+

cF+
d],

ht−E+
a = 0,

ht+E−
a = 0, (B.5c)

ht−E−
a = −iΓ−

a
cb(x)ψ−

c ∧ E−
b

+ iΛ−
a
b(x)[Db − Hb

cd(x)ψ−
c ∧ E−

d − Hb
cd(x)χ−

cF−
d],

ht+F+
a = 0, (B.5d)

ht−F+
a = 0,

ht+F−
a = 0, (B.5e)

ht−F−
a = 0.
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We note that the relations dz ∧ dz = 0, dz ∧ dz = 0 are crucial for ensuring the validity of

the above algebra. Therefore, ht+, ht− induce even 1-form variations on the on shell form

field algebra
�

•
E • , which we shall denote by the same symbols. An explicit calculation

using (4.12), (5.4), (5.5) on the same lines as the above yields the relations

(ht+st+ − st+ht+)xa = −i∂xa, (B.6a)

(ht−st− − st−ht−)xa = −i∂xa,

(ht+st− − st−ht+)xa = 0,

(ht−st+ − st+ht−)xa = 0,

(ht+st+ − st+ht+)χ+
a = −i∂χ+

a, (B.6b)

(ht−st− − st−ht−)χ+
a = −i∂χ+

a + E+
a,

(ht+st− − st−ht+)χ+
a = −Λ+

a
b(x)E−

b,

(ht−st+ − st+ht−)χ+
a = 0,

(ht+st+ − st+ht+)χ−
a = −i∂χ−

a + E−
a, (B.6c)

(ht−st− − st−ht−)χ−
a = −i∂χ−

a,

(ht+st− − st−ht+)χ−
a = 0,

(ht−st+ − st+ht−)χ−
a = −Λ−

a
b(x)E+

b,

(ht+st+ − st+ht+)ψ+
a = −i∂ψ+

a, (B.6d)

(ht−st− − st−ht−)ψ+
a = −i∂ψ+

a + F+
a,

(ht+st− − st−ht+)ψ+
a = 0,

(ht−st+ − st+ht−)ψ+
a = Λ+

a
b(x)F−

b,

(ht+st+ − st+ht+)ψ−
a = −i∂ψ−

a,+F−
a (B.6e)

(ht−st− − st−ht−)ψ−
a = −i∂ψ−

a,

(ht+st− − st−ht+)ψ−
a = Λ−

a
b(x)F+

b,

(ht−st+ − st+ht−)ψ−
a = 0,

and, similarly

ht+ht+xa = 0, (B.7a)

ht−ht−xa = 0,

(ht+ht− − ht−ht+)xa = 0,

ht+ht+χ+
a = 0, (B.7b)

ht−ht−χ+
a = 0,

(ht+ht− − ht−ht+)χ+
a = Λ+

a
b(x)F−

b,

ht+ht+χ−
a = 0, (B.7c)

ht−ht−χ−
a = 0,

(ht+ht− − ht−ht+)χ−
a = −Λ−

a
b(x)F+

b,

ht+ht+ψ+
a = 0, (B.7d)
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ht−ht−ψ+
a = 0,

(ht+ht− − ht−ht+)ψ+
a = 0,

ht+ht+ψ−
a = 0, (B.7e)

ht−ht−ψ−
a = 0,

(ht+ht− − ht−ht+)ψ−
a = 0.

From these relation (5.13), (5.14) follow immediately.

Similar results hold for the BRST variation st and the operator ht, as is obvious

from (4.15) and (5.7), respectively.

C. Type 0 generalized Kaehler structures

We assme first that H = 0. Consider the generalized complex J1/2 defined in (2.19).

Recalling that K±
t = −gK±g−1, one finds that

J1/2

(

X

ξ

)

=

( 1
2K+(X + g−1ξ) ± 1

2K−(X − g−1ξ)
1
2gK+(X + g−1ξ) ∓ 1

2gK−(X − g−1ξ),

)

(C.1)

for any section X+ξ ∈ C∞((TM⊕T ∗M)⊗C). By (C.1), the +i eigenbundle of J1 contains

the sections X + ξ of the form

X + ξ = X ± gX = X ∓ igK±X = X ± iiX(gK±), X ∈ C∞(T 1,0
± M), (C.2)

while the +i eigenbundle of J2 contains those of the form

X + ξ = X + gX = X − igK+X = X + iiX(gK+), X ∈ C∞(T 1,0
+ M), (C.3)

X + ξ = X − gX = X − igK−X = X + iiX(gK−), X ∈ C∞(T 0,1
− M).

Let φi be the pure spinor associated to Ji. Then, by (2.11), (2.12),

iXφi + ξ ∧ φi = 0, (C.4)

for any X + ξ ∈ (T ⊕ T ∗) ⊗ C in the +i eigenbundle of Ji, in particular those given in

either (C.2) or (C.3). Assume that the pure spinor φi is of the form

φi = exp(βi) (C.5)

with βi a 2-form. Then, (C.2), (C.3), (C.4) imply that

iX(β1 ± igK±) = 0, X ∈ C∞(T 1,0
± M), (C.6)

for J1, and that

iX(β2 + igK+) = 0, X ∈ C∞(T 1,0
+ M), (C.7)

iX(β2 + igK−) = 0, X ∈ C∞(T 0,1
− M),

for J2. Twisting by H 6= 0 simply shifts βi into βi + b. In this way, we recover (6.8) for J1.
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D. Relevant identities involving γ±

To begin with, we note that, since γ± is a 2-form of type (2, 0) with respect to K±, one has

Λ±
c
aγ±cb = 0. (D.1)

This relation will be exploited throughout.

From (6.9), it follows that

H ∓ id(gK±) − dγ± = 0. (D.2)

This identity can be cast as

∇∓a(∓iK±bc − γ±bc) = ∇±bγ±ca + ∇±cγ±ab ± Hg
bcγ±ga − 2Λ±

d
aHdbc, (D.3)

from which one obtains easily

Λ±
d
a∇∓d(∓iK±bc − γ±bc) (D.4a)

= Λ±
d
a(∇±bγ±cd + ∇±cγ±db ± Hg

bcγ±gd − 2Hdbc),

Λ±
d
a∇∓d(∓iK±bc − γ±bc) = 0. (D.4b)

From (6.9), it follows also that

igK+ + igK− + γ+ − γ− = 0. (D.5)

From here, one obtains that

Λ∓
f

c∇∓a(∓iK±bf − γ±bf ) = 0. (D.6)

Using (D.4), (D.6), it is straightforward to verify that (6.1) holds with Ψt, Stop given

by (6.14).
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[4] M. Roček, Modified Calabi-Yau manifolds with torsion, in Essays on Mirror Symmetry, ed. S.

T. Yau, International Press, Hong Kong, (1992).
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